On the recursive computation of the free energy of the hard-sphere gas

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1974 J. Phys. A: Math. Nucl. Gen. 7 L146
(http://iopscience.iop.org/0301-0015/7/13/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.87
The article was downloaded on 02/06/2010 at 04:52

Please note that terms and conditions apply.

LETTER TO THE EDITOR

On the recursive computation of the free energy of the hard-sphere gas

Arthur M Lesk
Fairleigh Dickinson University, Teaneck, New Jersey 07666, USA

Received 2 July 1974

Abstract

A modification of the recently published derivation of an expression for the free energy of a hard-sphere gas permits its evaluation in closed form.

Clippe and Evrard (1974) have recently published a method for approximating the free energy of a hard-sphere gas. The purpose of this letter is to show that by a modification of their derivation, an expression for this quantity is available in closed form.

Clippe and Evrard addressed themselves to the problem of evaluating

$$
-A / k T=\ln Q(N, V)=\int \ldots \int \mathrm{d} r_{1} \ldots \mathrm{~d} r_{N} \exp (-\beta u)
$$

where

$$
u=\sum_{i \neq j} u\left(r_{i j}\right)
$$

and

$$
u\left(r_{i j}\right)= \begin{cases}\infty & \text { if } r_{i j}<r_{0} \\ 0 & \text { if } r_{i j}>r_{0} .\end{cases}
$$

They point out that

$$
\exp (-\beta u)=\prod_{i, j} \theta\left(r_{i j}\right)
$$

where,

$$
\theta(r)= \begin{cases}0 & \text { if } r<r_{0} \\ 1 & \text { if } r>r_{0}\end{cases}
$$

and develop an approximate recursion relation for $Q(N, V)$ as a function of N for fixed V.
Provided that the total accessible volume V is greater than the volume occupied by the particles themselves, an exact recursion relation may be derived. For, comparing

$$
Q(N, V)=\int \ldots \int \mathrm{d} r_{1} \ldots \mathrm{~d} r_{N} \prod_{\substack{i=1 \\ j=1 \\ i \neq j}}^{N} \theta\left(r_{i j}\right)
$$

with

$$
Q(N+1, V)=\int \ldots \int \mathrm{d} r_{1} \ldots \mathrm{~d} r_{N+1} \prod_{\substack{i=1 \\ j=1 \\ i \neq j}}^{N+1} \theta\left(r_{i j}\right)
$$

the latter may be written in the form

$$
Q(N+1, V)=\int \mathrm{d} r_{N+1} \int \ldots \int \mathrm{~d} r_{1} \ldots \mathrm{~d} r_{N} \prod_{\substack{i=1 \\ j=1 \\ i \neq j}}^{N} \theta\left(r_{i j}\right) \prod_{i=1}^{N} \theta\left(r_{i, N+1}\right) .
$$

The product of those factors that contain coordinates of particle $N+1$, namely $\theta\left(r_{i, N+1}\right)$, vanishes except in a region of space $R\left(r_{1}, \ldots, r_{N}\right)$ that consists of a disjoint set of N balls, each of volume V_{0}, surrounding each of the first N particles. Within the region R it is equal to 1 . The integral $Q(N+1, V)$ may therefore be written:

$$
Q(N+1, V)=\int_{R} \mathrm{~d} r_{N+1}\left(\int_{\substack{\text { ail } \\
\text { space }}} \ldots \int_{\substack{ \\
\begin{subarray}{c}{i=1 \\
j=1 \\
i \neq j} }}\end{subarray}}^{N} r_{1} \ldots \mathrm{~d} r_{N} \prod_{i j}\right) .
$$

But now the integrand, in large parentheses, is independent of r_{N+1}, and is equal simply to $Q(N, V)$.

Therefore

$$
Q(N+1, V)=\left(V-N V_{0}\right) Q(N, V)
$$

where $V-N V_{0}$ is the volume of the region R. This is the desired recursion relation.
Because $Q(1, V)=V$, the result is

$$
Q(N, V)=\prod_{i=1}^{N}\left[V-(i-1) V_{0}\right]=V_{0}^{N} \frac{\Gamma\left(\left(V / V_{0}\right)+1\right)}{\Gamma\left(\left(V / V_{0}\right)+1-N\right)} .
$$

That the latter expression is non-singular follows from the assumption that there is really room for all the particles.

$$
\begin{aligned}
-A / k T=\ln Q(N, V) & =\ln \prod_{i=1}^{N}\left[V-(i-1) V_{0}\right] \\
& =\ln \left(V_{0}^{N} \frac{\Gamma\left(\left(V / V_{0}\right)+1\right)}{\Gamma\left(\left(V / V_{0}\right)+\overline{1}-N\right)}\right)
\end{aligned}
$$

In the low density limit it is appropriate to rewrite this result as

$$
-A / k T=\sum_{i=1}^{N} \ln \left\{V\left[1-(i-1)\left(V_{0} / V\right)\right]\right\}=N \ln V+\sum_{i=1}^{N} \ln \left[1-(i-1)\left(V_{0} / V\right)\right] .
$$

These equations are still exact. However, introducing the approximation $\ln (1-\epsilon) \simeq-\epsilon$

$$
\begin{aligned}
\lim _{\left(N V_{0} / V\right) \rightarrow 0}(-A / k T) & =N \ln V-\sum_{i=1}^{N}(i-1)\left(V_{0} / V\right) \\
& =N \ln V-\left[\frac{1}{2} N(N-1)\right]\left(V_{0} / V\right) \\
& \simeq N\left\{\ln V+\ln \left[1-\frac{1}{2}(N-1)\left(V_{0} / V\right)\right]\right\} \\
& =N \ln \left[V-\frac{1}{2}(N-1) V_{0}\right]
\end{aligned}
$$

which is equivalent to the van der Waals approximation (see Clippe and Evrard 1974, equation (11)) whenever $N-1 \simeq N$.

Work supported by research grant GJ-35327 from the US National Science Foundation.

References

Clippe P and Evrard R 1974 J. Phys. A : Math., Nucl. Gen. 7 L89-92

